skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sharma, Sanjana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When interacting with a robot, humans form con-ceptual models (of varying quality) which capture how the robot behaves. These conceptual models form just from watching or in-teracting with the robot, with or without conscious thought. Some methods select and present robot behaviors to improve human conceptual model formation; nonetheless, these methods and HRI more broadly have not yet consulted cognitive theories of human concept learning. These validated theories offer concrete design guidance to support humans in developing conceptual models more quickly, accurately, and flexibly. Specifically, Analogical Transfer Theory and the Variation Theory of Learning have been successfully deployed in other fields, and offer new insights for the HRI community about the selection and presentation of robot behaviors. Using these theories, we review and contextualize 35 prior works in human-robot teaching and learning, and we assess how these works incorporate or omit the design implications of these theories. From this review, we identify new opportunities for algorithms and interfaces to help humans more easily learn conceptual models of robot behaviors, which in turn can help humans become more effective robot teachers and collaborators. 
    more » « less